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Objective

Process a simulated neural signal, detect spikes, 

and visualize the results.

Use signal processing and machine learning for 

spike detection.
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Data Stimulation

FUNCTION: ACQUIRE_DATA

SIMULATES A SINUSOIDAL WAVEFORM.

ACTS AS A SIMPLE NEURAL SIGNAL.

NOISE INTRODUCTION:

RANDOM NOISE IS ADDED TO MIMIC REAL-WORLD NOISY 

RECORDINGS.



Spike Simulation
ARTIFICIAL "SPIKES" ARE INTRODUCED AT RANDOM 

INTERVALS.

THESE SPIKES REPRESENT NEURAL EVENTS OF 

INTEREST.



Signal Filtering
USE BUTTERWORTH LOW-PASS FILTER.

FUNCTION: FILTER_DATA

REDUCES HIGH-FREQUENCY NOISE AND RETAINS 

MEANINGFUL SIGNAL COMPONENTS.



Feature Extraction

Use Short Time Fourier Transform (STFT).

Function: extract_features

Converts time domain signal to frequency 
domain.

Offers both frequency and temporal 
characteristics.

Key parameters:

nperseg (Number of data points per 
segment)

noverlap (Number of overlapping points)



Label Generation

Based on the artificial spikes.

Function: generate_labels

Generates labels for each STFT segment 
indicating the presence or absence of a 

spike.



Machine Learning 
Classification

Model: Logistic Regression

Binary classification: Spike or No Spike.

Model is trained on training set and evaluated on the 

test set.

Metric: Classification Accuracy



Features shape: (30,)
Labels shape: (30,)

Classification Accuracy: 0.22

Visualization
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Objective

Process a noisy sinusoidal signal.

Use bandpass filtering and a neural network for a 

demonstration of spike detection
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Data Stimulation

FUNCTION: ACQUIRE_DATA

GENERATES A SINUSOIDAL WAVEFORM.

REPRESENTS A NEURAL SIGNAL OR ANY TIME-SERIES DATA.

INTRODUCE NOISE:

RANDOM NOISE IS ADDED TO MIMIC REAL-WORLD 

VARIATIONS.



Bandpass Filtering

Filtering to retain frequencies of interest and 
reject others.

Function: butter_bandpass and 
bandpass_filter

Filters the signal between 1.0Hz and 
10.0Hz.



Neural Network 
Architecture

A simple feedforward neural network for 
"spike" detection.

Input layer: 32 neurons, ReLU activation

Hidden layer: 16 neurons, ReLU activation

Output layer: 1 neuron, Sigmoid activation

Compiled with Adam optimizer and binary 
cross-entropy loss.



Spike Labeling

Here, the "spike" labels are generated as:

1 if the original signal is positive.

0 otherwise.

Note: This is a simplistic approach just for 
demonstration purposes.



Data Splitting
70% TRAINING DATA, 30% TESTING DATA.

USE TRAIN_TEST_SPLIT FROM SKLEARN.



Neural Network 
Training

70% TRAINING DATA, 30% TESTING DATA.

USE TRAIN_TEST_SPLIT FROM SKLEARN.



Epoch 1/10

22/22 [==============================] - 1s 15ms/step - loss: 0.6958 - accuracy: 0.5343 - val_loss: 0.6824 - val_accuracy: 0.6367

Epoch 2/10

22/22 [==============================] - 0s 5ms/step - loss: 0.6719 - accuracy: 0.6629 - val_loss: 0.6732 - val_accuracy: 0.6267

Epoch 3/10

22/22 [==============================] - 0s 5ms/step - loss: 0.6590 - accuracy: 0.6643 - val_loss: 0.6639 - val_accuracy: 0.6267

Epoch 4/10

22/22 [==============================] - 0s 5ms/step - loss: 0.6454 - accuracy: 0.6657 - val_loss: 0.6563 - val_accuracy: 0.6233

Epoch 5/10

22/22 [==============================] - 0s 4ms/step - loss: 0.6322 - accuracy: 0.6671 - val_loss: 0.6511 - val_accuracy: 0.6267

Epoch 6/10

22/22 [==============================] - 0s 5ms/step - loss: 0.6226 - accuracy: 0.6657 - val_loss: 0.6490 - val_accuracy: 0.6267

Epoch 7/10

22/22 [==============================] - 0s 6ms/step - loss: 0.6165 - accuracy: 0.6714 - val_loss: 0.6488 - val_accuracy: 0.6133

Epoch 8/10

22/22 [==============================] - 0s 4ms/step - loss: 0.6122 - accuracy: 0.6686 - val_loss: 0.6491 - val_accuracy: 0.6133

Epoch 9/10

22/22 [==============================] - 0s 4ms/step - loss: 0.6100 - accuracy: 0.6700 - val_loss: 0.6497 - val_accuracy: 0.6133

Epoch 10/10

22/22 [==============================] - 0s 4ms/step - loss: 0.6082 - accuracy: 0.6714 - val_loss: 0.6508 - val_accuracy: 0.6267

Training Log of the Neural 
Network Model



Neural Network Training 
Overview: 

• Epoch: One full training cycle on the dataset. Model trained over 10 epochs.

• Batches: Data divided into 22 batches per epoch for training.

• Loss: Measures prediction error. Lower is better.

• loss: Training data error.

• val_loss: Validation data error.

• Accuracy: Percentage of correct predictions.

• accuracy: Training data accuracy.

• val_accuracy: Validation data accuracy.



Neural Network Training 
Overview Key Takeaways:

1. Training Progress: Model's loss decreases, indicating it's learning.
2. Overfitting Signs: Validation loss increases after the 6th epoch while training loss decreases. Model might be 

memorizing training data.
3. Accuracy Plateau: Model's validation accuracy is steady, hinting it might not generalize well to new data.



Neural Network Training 
Overview Next Steps :

Early Stopping: Halt training when validation doesn't improve.
Regularization: Implement techniques like dropout to prevent overfitting.
Review Model: Simplify architecture if too complex.
Adjust Learning Rate: Optimize for better learning speed and results.





Conclusion
The fusion of traditional signal processing with machine 

learning offers potent tools for time-series data analysis. 

While this demonstration highlighted a basic approach, 

the underlying principles can be broadened to cater to 

more intricate datasets and tasks. This synergy 

underscores the program's capability in deciphering and 

managing noisy signals, showcasing the transformative 

potential of merging classical techniques with modern 

algorithms.
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