
Signal Processing &
Spike Detection

Mrigank Maharana

https://github.com/mkorkrish/NeuralPrograms

https://github.com/mkorkrish/NeuralPrograms

Combining traditional
signal processing with
machine learning

Program 1

Objective Data Stimulation

Spike Stimulation Signal Filtering

Feature

Extraction

Signal Processing & Spike Detection 2

Label Generation Data Splitting

Machine Learning

Classification

Objective

Process a simulated neural signal, detect spikes,

and visualize the results.

Use signal processing and machine learning for

spike detection.

Signal Processing & Spike Detection 3

Program 1

Data Stimulation

FUNCTION: ACQUIRE_DATA

SIMULATES A SINUSOIDAL WAVEFORM.

ACTS AS A SIMPLE NEURAL SIGNAL.

NOISE INTRODUCTION:

RANDOM NOISE IS ADDED TO MIMIC REAL-WORLD NOISY

RECORDINGS.

Spike Simulation
ARTIFICIAL "SPIKES" ARE INTRODUCED AT RANDOM

INTERVALS.

THESE SPIKES REPRESENT NEURAL EVENTS OF

INTEREST.

Signal Filtering
USE BUTTERWORTH LOW-PASS FILTER.

FUNCTION: FILTER_DATA

REDUCES HIGH-FREQUENCY NOISE AND RETAINS

MEANINGFUL SIGNAL COMPONENTS.

Feature Extraction

Use Short Time Fourier Transform (STFT).

Function: extract_features

Converts time domain signal to frequency
domain.

Offers both frequency and temporal
characteristics.

Key parameters:

nperseg (Number of data points per
segment)

noverlap (Number of overlapping points)

Label Generation

Based on the artificial spikes.

Function: generate_labels

Generates labels for each STFT segment
indicating the presence or absence of a

spike.

Machine Learning
Classification

Model: Logistic Regression

Binary classification: Spike or No Spike.

Model is trained on training set and evaluated on the

test set.

Metric: Classification Accuracy

Features shape: (30,)
Labels shape: (30,)

Classification Accuracy: 0.22

Visualization

Combining traditional
signal processing with
machine learning

Program 1.1

Objective Data Stimulation

Spike Stimulation
Bandpass

Filtering

Neural Network

Architecture

Signal Processing & Spike Detection 11

Neural Network

Training

Spike Labeling
Data Splitting

Visualization

Objective

Process a noisy sinusoidal signal.

Use bandpass filtering and a neural network for a

demonstration of spike detection

Signal Processing & Spike Detection 12

Program 1.1

Data Stimulation

FUNCTION: ACQUIRE_DATA

GENERATES A SINUSOIDAL WAVEFORM.

REPRESENTS A NEURAL SIGNAL OR ANY TIME-SERIES DATA.

INTRODUCE NOISE:

RANDOM NOISE IS ADDED TO MIMIC REAL-WORLD

VARIATIONS.

Bandpass Filtering

Filtering to retain frequencies of interest and
reject others.

Function: butter_bandpass and
bandpass_filter

Filters the signal between 1.0Hz and
10.0Hz.

Neural Network
Architecture

A simple feedforward neural network for
"spike" detection.

Input layer: 32 neurons, ReLU activation

Hidden layer: 16 neurons, ReLU activation

Output layer: 1 neuron, Sigmoid activation

Compiled with Adam optimizer and binary
cross-entropy loss.

Spike Labeling

Here, the "spike" labels are generated as:

1 if the original signal is positive.

0 otherwise.

Note: This is a simplistic approach just for
demonstration purposes.

Data Splitting
70% TRAINING DATA, 30% TESTING DATA.

USE TRAIN_TEST_SPLIT FROM SKLEARN.

Neural Network
Training

70% TRAINING DATA, 30% TESTING DATA.

USE TRAIN_TEST_SPLIT FROM SKLEARN.

Epoch 1/10

22/22 [==============================] - 1s 15ms/step - loss: 0.6958 - accuracy: 0.5343 - val_loss: 0.6824 - val_accuracy: 0.6367

Epoch 2/10

22/22 [==============================] - 0s 5ms/step - loss: 0.6719 - accuracy: 0.6629 - val_loss: 0.6732 - val_accuracy: 0.6267

Epoch 3/10

22/22 [==============================] - 0s 5ms/step - loss: 0.6590 - accuracy: 0.6643 - val_loss: 0.6639 - val_accuracy: 0.6267

Epoch 4/10

22/22 [==============================] - 0s 5ms/step - loss: 0.6454 - accuracy: 0.6657 - val_loss: 0.6563 - val_accuracy: 0.6233

Epoch 5/10

22/22 [==============================] - 0s 4ms/step - loss: 0.6322 - accuracy: 0.6671 - val_loss: 0.6511 - val_accuracy: 0.6267

Epoch 6/10

22/22 [==============================] - 0s 5ms/step - loss: 0.6226 - accuracy: 0.6657 - val_loss: 0.6490 - val_accuracy: 0.6267

Epoch 7/10

22/22 [==============================] - 0s 6ms/step - loss: 0.6165 - accuracy: 0.6714 - val_loss: 0.6488 - val_accuracy: 0.6133

Epoch 8/10

22/22 [==============================] - 0s 4ms/step - loss: 0.6122 - accuracy: 0.6686 - val_loss: 0.6491 - val_accuracy: 0.6133

Epoch 9/10

22/22 [==============================] - 0s 4ms/step - loss: 0.6100 - accuracy: 0.6700 - val_loss: 0.6497 - val_accuracy: 0.6133

Epoch 10/10

22/22 [==============================] - 0s 4ms/step - loss: 0.6082 - accuracy: 0.6714 - val_loss: 0.6508 - val_accuracy: 0.6267

Training Log of the Neural
Network Model

Neural Network Training
Overview:

• Epoch: One full training cycle on the dataset. Model trained over 10 epochs.

• Batches: Data divided into 22 batches per epoch for training.

• Loss: Measures prediction error. Lower is better.

• loss: Training data error.

• val_loss: Validation data error.

• Accuracy: Percentage of correct predictions.

• accuracy: Training data accuracy.

• val_accuracy: Validation data accuracy.

Neural Network Training
Overview Key Takeaways:

1. Training Progress: Model's loss decreases, indicating it's learning.
2. Overfitting Signs: Validation loss increases after the 6th epoch while training loss decreases. Model might be

memorizing training data.
3. Accuracy Plateau: Model's validation accuracy is steady, hinting it might not generalize well to new data.

Neural Network Training
Overview Next Steps :

Early Stopping: Halt training when validation doesn't improve.
Regularization: Implement techniques like dropout to prevent overfitting.
Review Model: Simplify architecture if too complex.
Adjust Learning Rate: Optimize for better learning speed and results.

Conclusion
The fusion of traditional signal processing with machine

learning offers potent tools for time-series data analysis.

While this demonstration highlighted a basic approach,

the underlying principles can be broadened to cater to

more intricate datasets and tasks. This synergy

underscores the program's capability in deciphering and

managing noisy signals, showcasing the transformative

potential of merging classical techniques with modern

algorithms.

Signal Processing & Spike Detection 24

Thank you
Mrigank Maharana

Mk's Portfolio Page - Home (mk-maharana.web.app)

https://github.com/mkorkrish/NeuralPrograms

www.linkedin.com/in/mrigank-maharana-67a07020a

https://mk-maharana.web.app/
https://github.com/mkorkrish/NeuralPrograms
http://www.linkedin.com/in/mrigank-maharana-67a07020a

	Slide 1: Signal Processing & Spike Detection
	Slide 2: Combining traditional signal processing with machine learning Program 1
	Slide 3: Objective
	Slide 4: Data Stimulation
	Slide 5: Spike Simulation
	Slide 6: Signal Filtering
	Slide 7: Feature Extraction
	Slide 8: Label Generation
	Slide 9: Machine Learning Classification
	Slide 10
	Slide 11: Combining traditional signal processing with machine learning Program 1.1
	Slide 12: Objective
	Slide 13: Data Stimulation
	Slide 14: Bandpass Filtering
	Slide 15: Neural Network Architecture
	Slide 16: Spike Labeling
	Slide 17: Data Splitting
	Slide 18: Neural Network Training
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Conclusion
	Slide 25: Thank you

